Editorial: Emergent Neural Computation from the Interaction of Different Forms of Plasticity
نویسندگان
چکیده
More than 60 years later, Hebb's prophecy " neurons that fire together wire together " (Hebb, 1949; Shatz, 1992) prevails as one of the cornerstones of modern neuroscience. Nonetheless, it is becoming increasingly evident that there is more to neural plasticity than the strengthening of synapses between co-active neurons. Experiments have revealed a plethora of synaptic and cellular plasticity mechanisms acting simultaneously in neural circuits. How such diverse forms of plasticity collectively give rise to neural computation remains poorly understood. The present Research Topic approaches this question by bringing together recent advances in the modeling of different forms of synaptic and neuronal plasticity. Taken together, these studies argue that the concerted interaction of diverse forms of plasticity is critical for circuit formation and function. A first insight from this Research Topic underscores the importance of the time scale of homeostatic plasticity to avoid runaway dynamics of Hebbian plasticity. While known homeostatic processes act slowly, on the timescale of hours to days, existing theoretical models invariably use fast homeostasis. Yger and Gilson (2015) review a body of theoretical work arguing that rapid forms of homeostatic control are in fact critical for stable learning and thus should also exist in biological circuits. Following a similar line of thought, Chistiakova et al. (2015) review experimental and theoretical literature which suggests that the role of rapid homeostasis could be filled by heterosynaptic plasticity. Alternatively, other mechanisms can achieve a similar stabilizing effect, as long as they are fast, for instance the rapid homeostatic sliding threshold in Guise et al. (2015). These findings raise questions concerning the purpose of slow homeostasis and metaplasticity. Since non-modulated plasticity leads to " interference " between memories when confronted with rich environmental stimuli (Chrol-Cannon and Jin, 2015), it is tempting to hypothesize that certain slow homeostatic mechanisms may correct for this (Yger and Gilson, 2015). The second development reflected in this Research Topic concerns the interactions between excitatory and inhibitory (E/I) plasticity. Multiple studies independently stress the importance of such interactions for shaping circuit selectivity and decorrelating network activity during learning. Kleberg et al. (2014) demonstrate how spike-timing-dependent plasticity at excitatory (eSTDP) and inhibitory (iSTDP) synapses drives the formation of selective signaling pathways in feed-forward networks. Together they ensure excitatory-inhibitory balance and sharpen neuronal responses to salient inputs. Moreover, by systematically exploring different iSTDP windows, the authors show that anti-symmetric plasticity, in which pre-post spike pairs lead to potentiation …
منابع مشابه
Learning Curve Consideration in Makespan Computation Using Artificial Neural Network Approach
This paper presents an alternative method using artificial neural network (ANN) to develop a scheduling scheme which is used to determine the makespan or cycle time of a group of jobs going through a series of stages or workstations. The common conventional method uses mathematical programming techniques and presented in Gantt charts forms. The contribution of this paper is in three fold. First...
متن کاملFading memory and time series prediction in recurrent networks with different forms of plasticity
We investigate how different forms of plasticity shape the dynamics and computational properties of simple recurrent spiking neural networks. In particular, we study the effect of combining two forms of neuronal plasticity: spike timing dependent plasticity (STDP), which changes the synaptic strength, and intrinsic plasticity (IP), which changes the excitability of individual neurons to maintai...
متن کاملHigh neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملبررسی شکل دهی معکوس شوندة صفحات نازک با در نظر گرفتن پدیدة باشینگر
This paper investigates the forming of sheet metal forming under cycling loading by considering the Bauschinger effect. Different proposed plasticity models which can handle this kind of deformation process have been reviewed in details. For instance, isotropic, kinematic and combined forms in the linear and non-linear cases including the well-known Yoshida and Chaboche's models have been studi...
متن کاملComparison of the performances of neural networks specification, the Translog and the Fourier flexible forms when different production technologies are used
This paper investigates the performances of artificial neural networks approximation, the Translog and the Fourier flexible functional forms for the cost function, when different production technologies are used. Using simulated data bases, the author provides a comparison in terms of capability to reproduce input demands and in terms of the corresponding input elasticities of substitution esti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015